
Levy

Irrelevance in Problem Solving

Alon Y. Levy

Knowledge Systems Laboratory

Stanford University

701 Welch Road, Bldg. C, Palo Alto, CA 94304
alevy_cs.st anford.edu

/

Abstract

The notion of irrelevance underlies many different

works in AI, such as detecting redundant facts,

creating abstraction hierarchies and reformulation

and modeling physical devices. However, in order

to design problem solvers that exploit the notion

of irrelevance, either by automatically detecting

irrelevance or by being given knowledge about ir-

relevance, a formal treatment of the notion is re-

quired.

In this paper we present a general framework for

analyzing irrelevance. We discuss several prop-

erties of irrelevance and show how they vary in

a space of definitions outlined by the framework.
We show how irrelevance claims can be used to

justify the creation of abstractions thereby sug-

gesting a new view on the work on abstraction.

Introduction

Meta-level reasoning has received a lot of attention

from researchers in artificial intelligence as a means

of guiding problem solvers in their search for solu-
tions [Hayes, 1973; Genesereth, 1988; Smith and Gene-

sereth, 1985; Clancey, 1983]. A common of recta-

level strategy is to avoid using knowledge that is ir-

relevant to the goal at hand. In fact, the notion of

irrelevance has been a common theme in many re-

search works, but its formal analysis has received at-

tention only from few researchers such as Subramanian

and Genesereth [Subramanian and Genesereth, 1987;

Subramanian, 1989]. The ability to give a problem

solver advice about what parts of a knowledge base are

irrelevant to a specific problem solving goal is a power-

ful method to reduce its search. For example, consider

a domain in which we are trying to find routes between

cities in the country, using flights, trains and busses.

For some goals, we might want to advise the problem

solver that rules and facts about flights are irrelevant,

either because the minimal price of flights is known to

be greater than is required for the specific goal or be-

cause we know that flights will not yield an optimal

solution. By giving this advice, we significantly reduce

the size of the search space explored by the problem
solver.

The notion of irrelevance also plays a key role in
work on abstractions and change of representation. In-
tuitively, when we want to create a simpler or abstract

representation we remove some irrelevant detail. If the
removed detail was indeed irrelevant then the solution

to the problem in the abstract theory will map back to
a solution in the original theory. Therefore, if we can

provide the system with knowledge about irrelevance

or relative irrelevance of knowledge, the system can
exploit it to automatically create abstractions. Meth-

ods for mechanically detecting relevance can be used

to automatically create abstractions.

However, both in order for a user to be able to

state such claims to a system in a principled man-

ner and for the system to make proper use of given

claims, a better analysis of the notion of irrelevance

in problem solving is required. This paper describes

a general framework for analyzing the notion of irrel-

evance. We define a space of possible definitions of

irrelevance by identifying several axes along which ir-

relevance claims differ. Several important properties of

irrelevance concerning their usage in problem-solving

are outlined and we show how varying the definition

of irrelevance in our space affects the satisfaction of

these properties. Next, we discuss how irrelevance

claims can serve as justifications for creating an ab-
straction. The case of irrelevance of a distinction be-

tween properties (represented as predicates) is exam-
ined in detail and we show how such a claim serves as a

justification for predicate abstraction [Plaisted, 1981;
Tenenberg, 1987].

This framework makes several contributions. First,
it clarifies the issues involved in the notion of irrele-

vance therefore enabling us to better exploit the notion

in works that rely on it, such as the work on detect-

ing redundant facts or creating abstraction hierarchies.

The properties of irrelevance that we outline provide

guidance in building a system that incorporates such

claims. Giving precise definitions of irrelevance for-

malizes the problem of automatically deducing irrele-

vance facts, thereby enabling us to automatically ere-

-- 121

ate abstractions, based on deduced irrelevance claims,

Moreover, since our framework provides a language to

express knowledge about irrelevance, we can use this

language to express knowledge about the domain that

can help reduce the size of the search or justify creating
an abstraction.

Preliminaries

Assume our theory of the domain is represented by a
knowledge base of first order predicate calculus formu-

las, A. A problem solving goal (or query) is repre-

sented by a formula _b. The goal is to find whether

is implied by A (or if ¢ has free variables, we want
to know which assignments to the variables result in

a formula that is entailed from A.). Our aim is to
identify facts that are irrelevant to ¢ in order to re-

duce the search space generated for ¢. Formalizing

the concept of irrelevance can be done in several levels.

For example, one can formalize irrelevance in terms of

the models of A and ¢, i.e., a semantic level analy-

sis. Irrelevance can also be analyzed in terms of the

facts in the theory A, a so called meta-theoretic analy-

sis [Subramanian, 1989]. Alternatively, one can give a

proof-theoretic analysis of irrelevance, in terms of the

actual set of derivations the problem solver can explore

in the search to solve ¢. Although these levels are by

no means independent, it is important to distinguish

between them when defining irrelevance or comparing
between definitions.

The goal of this paper isto define notions of irrele-

• vance that enable us to optimize actual problem solv-

ing. Therefore, we analyze irrelevance from the sys-

tem's view of the problem-solving process which is a

proof-theoreticone. The system does not actually see
the world as the user sees it nor does it see the con-

ceptualization of the world. Instead, itsees the set of

symbols used to describe the domain and the set of

derivations it can generate.

Example 1: Suppose we are using a resolution theo-

rem prover on a knowledge base in clause form I. Con-

sider the following two theories:

7'1 = {f =#. g, "_.f :=_ g}

T2= {g}.
T_ and T2 are satisfiedby the same set of models. [n

each the value assigned to f does not affectthe value

of g, and therefore we might consider .fto be irrelevant

to g. However, in 7'i,the theorem prover willhave to

resolve on the symbol f to derive g, and therefore as

far as it isconcerned, itcan't ignore the symbol f. |

Note that we are not claiming that irrelevancerela-

tions in the domain are not useful to control problem

solving; quite the contrary. Most irrelevance factsare

l For clarity, in this document we do not use clause form

notation but assume the problem solvergets formulas in
clauseform.

based on properties of the domain. However, a rete-

vance relation in the domain willonly be useful ifit is

reflectedin the representation.

In particular, for a problem solver to exploit irrel-

evance claims, the following properties of irrelevance

claims willbe of interest.Assume IR(¢, ¢, A) denotes

that the fact(or set of facts)_bisirrelevantto the goal

_bwith respect to the theory A.

• What can the problem solver do given the irrele-

vance claim? Can it ignore a fact that is deemed

irrelevant?Can itignore any fact that contains itas

a subexpression?

• Do irrelevance claims add up? If IR(¢I,lP, A)

and IR(_2,¢,A) hold, does that imply that
IR({_I, _2}, ¢, A) holds? If so, we can use all the
relevance claims that are available to us at a given

instant. However, if not, we can only use one at a

time, and then we must check that the others still

hold in the resulting theory.

• Is irrelevance a monotonic property? I.e., if we add

more facts to the knowledge base, can irrelevant facts
become relevant or vice versa?

• Does the irrelevance of a subject imply the irrele-

vance of a subject which is syntactically related to

it? E.g., Does IR(#, ¢, A) imply IR('_¢, ¢, A) or

IR((aV (_t, ¢/, &)? Such properties will enable us use

a given set of irrelevance claims to deduce additional
ones.

• Can irrelevance claims be found automatically by

examining the KB?

An important issue in a definition of irrelevance is

the subject of irrelevance, i.e., the type of entity being

deemed irrelevant to the goal. So far we discussed only

the irrelevance of a fact (or set of facts) to a problem

solving goal, but the subject may be any kind of entity

in the representation, such as the objects-constants,

predicate-symbols and functions. The irrelevance sub-

ject can also be more abstract such as a decision to

distinguish between a set of predicates or objects in

the representation. The following is an example of the

irrelevance of a predicate distinction.

Example 2: Consider the knowledge base with the

following facts.

rl : SportaCar(z) =_ Vehicle(z)

r2 : FamilyCar(z) :_ Vehicle(z)

ra : SportsCar(z) =_ HighRisklnsurance(z)

1"4 : F amilyCar(z) :_ --,SporfsCar(z)

rs : FamilyCar(Camry)

In order to solve the query Vehicle(z), the distinc-
tion between the relations SportsCar and FamilyCar

is irrelevant. Intuitively, all that matters for the proof

is that z is some kind of car. Therefore, we can re-

move the distinction in the representation by predzcate

abstraction [Tenenberg, 1987]. We express the theory

using an abstract predicate, Car, as follows:

122

sl :Car(x) :=* Vehicle(x)

s2 : Car(Camry)

rl and r2 were abstracted to sl, while r5 was ab-

stracted to s2. r3 on the other hand was a rule specific
to SportsCar, because

FamilyCar(x) _ HighRisk[nsurance(x)
does not hold, and therefore we cannot abstract it to

Car(x) ::_ H igh Risk lnsurance(x).

Consequently, it is removed from the theory. Simi-

larly, r4 is a formula that distinguishes between the

relations FamilyCar and SportsCar and therefore is

removed from a theory that ignores the distinction be-
tween these relations, l

A final issue that factors into a definition of irrele-

vance is the space of possible changes of the representa-

tions and the theory (or weakemngs of the theory [Sub-

ramanian and Genesereth, 1987]) we are considering in

order to remove the irrelevancy. In example 1, we only

considered changing the theory by removing facts and

therefore we could not justifiably say that f is irrele-

vant to 9. However, had we considered changing the

theory by adding some of its logical consequences (e.g.,

g), we could deem f irrelevant to g. In example 2, the
irrelevancy was removed by predicate abstraction, i.e.,

replacing the predicates FamilyCar and SportsCar

by an abstract predicate Car.

A Space of Irrelevancies

To capture the various properties of irrelevance we de-
fine a space of possible definitions of irrelevance. The

space of definitions revolves around the set of possible

derivations of the goal. Let A be a knowledge-base,

be a goal and D be the set of derivations of ¢ from

A. A definition of irrelevance of ¢ (which can be any

irrelevance subject) to ¢ is composed of the following
choices:

A1. Defining irrelevance of ¢ with respect to a single

derivation, D E D.

A2. A subset Do of 7) over which to quantify AI.

A3. The method of quantification over Do, i.e., ex-

istentially or universally.

Formally, if D is a derivation of a goal ¢ from a

knowledge base, A, we denote the choice for A1 by

Ir(¢, _k, D), i.e., that ¢ is irrelevant to the derivation

D of the goal ¢. If O is a set of facts, It(O, _b, D) holds

if It(C,, _p, D) for all ¢i E _.

Definition 3: Let 7)0 be a set of derivations of a

goal _k from the knowledge base A 2. ¢ is said to

be weakly irrelevant to 0 with respect to 7)0, de-

noted by WI(¢, ¢, 7)0) 3, if It(C, _, D) holds for some

2If 0 is a set of goals (e.g., a goal with free variables) we
consider a set of derivations for every element of _,. The

definitions below hold if they hold for every element of ¢.
z Note that the knowledge base A is implicit in the third

argument of WI and SI.

D E "D0. ¢ is said to be strongly irrelevant, denoted by

SI(¢, ¢, :D0), if It(C, ¢, D) holds for every D e Do. |

Note that in Definition 3, the knowledge base, A

does not appear explicitly in WI (SI), but is implicit

in the set Do. For every choice of [r and of 7)0, we get

a definition for weak and strong irrelevance. Except

for 7)0 = 7), examples of D0 include the set of all min-

imal derivations 4, or all derivations bounded by some

resource constraints. The following example clarifies
some of these distinctions.

Example 4: Consider a knowledge base with the fol-

lowing rules:

rl : E(z) = Q(_)
r2 : R(x) = Q(_)
r3 : P(z) _ Q(x)
r4 : E(=) =_ P(x)

rs: O(*) = P(_)

Q(x)

E(_ R(_

x_ E(x)

E(_ R(_ P(_

/ \

Figure 1: Search space for a goal Q(x)

The knowledge base also contains a set of ground

facts but only for the predicate E. Figure 1 shows the

possible derivations that can be generated for Q from

this theory. Suppose we define Ir(r,g, D) to hold if
the rule r does not appear in the derivation D. Let 7)

be the set of all derivations of Q(a) 5. WI(ra, Q(a), D)

holds since whenever Q(a) is derivable, there will be

a derivation of Q(a) using only r I. SI(r2,Q(a),D)

holds because r2 cannot be part of a proof of Q(a).

SI(rs,Q(a),7)) does not hold, however, if we con-
sider the set of non-redundant derivations 7)08 , then

S[(rs,Q(a),7)o) holds. 1

Irrelevance of a Fact

In this section we briefly consider the case in which the

relevance subject is a single fact, and show how vary-
ing the choices for A1-A3 affects the properties of the

resulting irrelevance claims. The definitions consider a
specific problem solver, hence our discussion assumes

we are using resolution theorem prover. A derivation

4Given some criteria of minimality of deductions.
5which will be empty i[E(a) is not in the knowledge

base.

aA derivation tree is redundant if it has two identical

nodes nl and n2 such that nt is an ancestor of n_.

123

is a resolution tree of clauses, where the goal clause
(or the empty clause in case of a refutation proof) is
the root, and the children of every clause are the two
clauses that were resolved in order to get it. The leaves
of the tree are clauses from the knowledge base, and
they are denoted by Base(D).

Consider three choices for AI. In the first, a fact
is irrelevant to a derivation of the goal if it is not one
knowledge-base facts used in it:

Definition 5: Irl(c_, t_, D) if ¢__ Base(D). I

A stronger definition requires that _ is irrelevant to
a derivation if it appears nowhere in the derivation:

Definition 6: Ir_(¢_, V_,D) iff there does not exist a
substitution (r such that &a is a subclause of a clause
inD. I

Subramanian [Subramanian, 1989] defines 4_ to be
irrelevant to V)with .-.'_pect to a theory A, if there is
a subset of A that .ils _ but is non-committal on
_,. In our space, we _l formalize this as follows:

Definition 7: lr_ ¢,_,D) if Base(D) _ _ and
Base(D) _ "_4_.I

Using It3, for a refutation resolution theorem
prover, WI(¢,_O,I)) is equivalent to the definition
given in [Subramanian, 1989].

Figure summarizes the different properties that hold
for the definitions described above. The following show
how the properties of weak irrelevance differ from those
of strong irrelevance.

Observation 8: Whenever irrelevance adds up on a
single derivation, it will add up for strong irrelevance,
I.e., if

lr('_l, e;, D) A Ir(_2, _k,D) :0 It({_a, _2 }, 9, D)

hold for any D, then for any choice of Do,

si(0,, ,, D) ^ sI(o2, ¢:, D) :, s1({o,. 02}, g, D)

This property does not hold for weak irrelevance. I

Observation 9: The converse holds for weak irrele-
vance too, i.e., whenever

tr({_,,, %}, ,_, D) :* Ir(a,,, _, D) ^ I_(,t,2, ,/,, D)

holds for any D, then for any choice of D0,

WI({O], 02}, tk,Do) =*.W l(O1, O, Do) ^ W I(O2, ¢:. 2)o)

SI((O,. 02}, ¢:, Do) o SI(O,, ¢:, Do) A SI(02, O, Do)

I

Observation 10: For any definition of lr such that
Ir(@,_,D) ::_ [rl(@,t_,D), if we add facts to the
knowledge base, irrelevance can change as follows. A
fact that was weakly irrelevant will still be weakly ir-
relevant. A fact that was strongly irrelevant will be
at least weakly irrelevant. A fact that was not weakly
irrelevant might become weakly irrelevant. I

Irl Ir_ [r3

P, ,/ ,/ V
P, V

,/
P, V ,/ ,/
Ps ,/
P6 ¢

Pt : WI(¢J, e;, D) implies that A \ _ F-¢.
P_: WI(¢,tb, Z)) implies that the problem solver

can ignore any derivation that contains qJ.
Ps: WI(@, O, D) implies that the problem solver

can ignore any derivation that contains
@ as a subexpression.

P4: Adding up -
lr(Ot, ¢:, D) h 1r(02, O, D) =#,
Ir({Ot, 02}, g, D).

Ps: Transfers through equivalence -
Ir(¢t,0,D) A (@t ----¢t2) ::_
Ir(@_,@, D).

P6: If @ is a subclause of ¢1, then
lr(@l, @, D) ::_ It(@1, t/,, D).

Figure 2: Properties of Irrelevance

Deducing Irrelevance Claims

Varying the definition of irrelevance has drastic ef-
fects on the ability to automatically derive irrelevance
claims. Given a knowledge base A and a goal _b, we
would like to derive all (or part of) the facts in A that
are irrelevant to _b. [n general, looking at the whole
knowledge base to determine irrelevance will be more
costly than solving the query. A more interesting ques-
tion is whether irrelevance claims can be derived by
looking at only a small and stable part of the knowl-
edge base. For example, in example 4, we were able to
determine irrelevance by merely looking at the struc-
ture of the proof space created by the rules, regardless
of the specific ground facts for the predicate E.

We examine this question for knowledge bases com-
prised of a set of Horn rules with no function symbols
(Datalog, [UIIman, 1989]), and a database of ground
atomic facts. We distinguish between two sets of pred-
icates in the knowledge base, the extensional predicates
(EDB predicates) which are those that appear only
in the database and in antecedents of rules, and the
intensional predicates (IDB predicates) which are the
predicates appearing in the consequents of the rules,
i.e., the predicates that are being defined by the EDB
predicates and the rules. A query is an IDB predicate,
i.e., to find all the derivable facts for that predicate.
Every derivable instance of the goal has a (perhaps
more than one) derivation tree. A derivation tree is
a tree consisting of goal-nodes and rule-nodes. A goal

124

node is labeled by a ground atom, and it has a single
child, which is an instantiated rule-node. The head

of an instantiated rule-node is identical to its parent
goal-node. A rule-node has a child goal-node for each

one of its subgoa[s. The leaves of a derivation tree are

goal-nodes labeled by ground atoms from the EDB. A

derivation is not minzrnal (or redundant) if there are
two identical goal-nodes nl and n2, such nl is an an-

cestor of n2. A rule r is irrelevant to a derivation D

(i.e., It(r, _,D)) if none of the rule nodes in D are

instances of r (note that this is equivalent to Irl and
Ir_).

The question we address is the following. Given a set

of rules, P, a query q and a definition of irrelevance,
can we determine whether a rule r E P is irrelevant

to query for any possible set of ground facts in the

knowledge base. We consider two choices for A2, the

set of all derivations of the goal q, denoted by D, and

the set of all minimal derivations, Do.

Finding irrelevant rules enables us to significantly

prune the search space for the query. In exam-

ple 4, rule r2 will not appear in any derivation of

Q, therefore SI(r2,Q(z),D) holds, r5 will appear

only in redundant derivations of Q and therefore

SI(rs, Q(x), Do) holds. Since Q(x) can always be de-

rived using either rl or {r3, r4}, both WI(rl, Q(z), D)

and WI({r3, r4}, Q(x),D) hold. Consequently, iden-
tifying the various kinds of irrelevance can enable us

to compute Q using only rl. Considering constraint
literals in the rules enables us to derive additional ir-

relevance claims:

Example 11: Consider the following knowledge base:

sl :Q(x,z) AQl(z,y)Ax < z :_ P(x,y)

s_ : Q(z,x) A Ql(x,y) A x < y =_ P(x,y)

s3 : _:_(_:, u) ^ • < 3 = Q(_, y)
s4 : E2(x,y) ^ x > 1 =_ Ql(x,y)

If the query is P(x, y), all rules are relevant. However,

if the query is P(x, y) A (y < 1), then s2 is strongly

irrelevant, i.e., SI(s2, P(x, y)A (y < 1),D). [[

Finding all rules which are weakly irrelevant, i.e.,

WI(r, g, D), is precisely the rule redundancy problem
shown to be undecidable by Shmueli [Shmueli, 1987].

Consequently, determining WI(r, g, Do) is also unde-

cidable. For strong irrelevance, if the rules contain

no constraint literals and no object constants, deter-

mining SI(r, g, Do) is equivalent to the rule reachabil-
ity problem that has an easy polynomial time solu-

tion [Kifer, 1988]. [Levy and Sagiv, 1992] gives an al-

gorithm for detecting SI(r, g, Do) and SI(r, g, D) even
when constraint literals are present. It also establishes

an exponential-time lower bound on the problem of

determining Sl(r, g, Do).

Using Irrelevance to Justify
Abstractions

Much of the work in AI on creating abstraction hierar-

chies relies on the intuition that by creating an abstract
theory we are removing some irrelevant detail. If the

detail removed is indeed irrelevant, then a solution to

the problem in the abstract theory will map back to

a solution in the original theory (also referred to as
the ground theory). Otherwise, we will have to back-

track between abstraction levels. Although this has

been the motivation underlying work on abstractions,
the formal connection between irrelevance and abstrac-

tions has received little attention (e.g., [Subramanian,
1989]). For example we can view predicate abstraction

as being justified by the irrelevance of a distinction be-

tween predicates; object aggregation can be justified

by irrelevance of a granularity distinction. Identifying
abstraction with the notion of irrelevance offers several

advantages:

• We make explicit what is being abstracted (i.e., the
subject of irrelevance).

• We make clear the strength of the justification for

the abstraction (by the strength of the type of irrel-

evance claim that holds).

• We formalize the problem of automatically creating

abstractions by translating it to the problem of au-

tomatically finding irrelevance claims.

In this section we briefly discuss how irrelevance

claims that are justifications for abstractions can be

formulated in our framework. We identify several zr-

relevance subjects that account for many abstractions

discussed in the literature. As a consequence we get

an expressive language to state knowledge about the
domain that can affect the creation of abstractions.

We define a notion of irrelevance that best justifies ab-
stractions and mention several weaker notions.

The firstassumption underlying a formalization of

irrelevance is that removing irrelevant detail should

not enable us to reach new conclusions about the set of

goals we are interestedin, i.e.,any conclusion reached

in the abstract theory should be an abstraction of one

in the base theory (thisisalsoknown as a TD property

of abstractions [Giunchiglia and Walsh, 1991] or the

downward solution property [Tenenberg, 1987]). The

justificationfor this claim is that by removing irrel-

evant detail, we are effectivelyignoring some of our

knowledge, and therefore, we can not come to new

conclusions7. For example, when we remove some ir-

relevant detailin a planning problem (e.g.,action pre-

condition), if the resulting abstract plan can not be

mapped back to a base-levelplan, the detail we have

removed was not truly irrelevantto the problem s. Sec-

7As long as the our reasoning has no form of non-
monotonicity.

8Note that thisdoes not necessarilymean that the ab-
stractionisnot use[u[!

125

ond, the abstract theory should not prevent us from
solving the goal, i.e., if the original theory had a so-
lution to the goal, then the abstract one should too.
Finally, in order for the abstraction to be computa-
tionally effective, the solutions that are preserved by
the abstraction should be the cheaper ones.

These criteria are naturally formulated in our frame-
work. Recall that in order to define irrelevance of a

subject c_, we must give a definition for Ir(c_,_b, D),
i.e., when the subject c_ is irrelevant to a derivation D.
Given a theory A, we denote the abstract theory re-
suiting from removing the irrelevancy a by fa(A). For
example, ifa is a distinction between predicates, f_(A)
is the theory resulting from predicate abstraction. The
exact form of fa(A) is discussed in the next section.
We base our definition of Ir on a mapping ha from the
derivations of¢ in A, denoted by DI, to the derivations
of fa(¢) in fa(A), D2. The only requirement from ha
is that it is onto D2. ha need not be a total mapping on
D1, i.e., there might be derivations of ¢ that will not
be mapped to the abstract theory, and it need not be
1-1. Other constraints on ha will yield stronger forms
of irrelevance and therefore stronger justifications for
the abstraction, (for example, ha will be called a sim-
plifying mapping if for any D E D1, the cost of h(D) is
no more than the cost of Dg). Given ho, Ir(a,¢, D)
is defined as follows:

Definition 12: lr(a,¢,D) is true iff h_(D) is not
empty. |

Note that in this definition h_ is dependent on a
and ¢. Definitions of weak and strong irrelevance are
obtained by quantifying the definition of lr over a cho-
sen set of derivations. The following states that the
first two requirements of an abstraction are satisfied
by weak irrelevance.

Observation 13: If Do is a set of derivations in D1,
and WI(a,¢,Do) holds then ¢ is provable from A if
and only if f(¢) is provable from f_(A). |

In order satisfy the third requirement, we must im-
pose a restriction on Do:

Observation 14: If Do is a set of derivations that
contains all minimal derivations and ha is a simplifying
mapping, then ifSI(a, ¢, D0.) holds, fa(¢) will have a
solution in the abstract theory if and only if it has one
in the original theory, and at least one of abstract-level
solutions will cost no more than that cheapest solution
in the original theory. |

This condition is a sound justification for creating
the abstraction. Imposing more constraints on ha will
give us even stronger justifications. For example, we
can require that ho(D) effectively break up D into
subproblems of equal size. Knoblock [Knoblock, 1990;
Knoblock et al., 1991] shows how this constraint along

SGiven some cost model for derivations ,'_ch as the
number of nodes in the proof tree.

with other ,ffect_ he ability to achieve savings when
employing _rare'. d planning.

Weaker :eleva_ .: claims can also be given to the
system. For exam_:,_e, we can state a distinction al
is more relevant than a distinction a_, i.e., whenever
al is justifiably abstracted, so is a2. Another kind

of claim is one a probabilistic one, i.e., stating to the
system that in most cases a is irrelevant to ¢. The sys-
tem can then use this claim and succeed in most cases
and backtra£k in others. By stating irrelevance claims
declaratively we can also state under what conditions
the relevance claim holds.

In the next section we examine the case of predicate
abstractions and show they are justified by irrelevance
of a predicate distinction.

Irrelevance of Predicate Distinctions

When designing a representation, a decision has to be
-lade about the detail with which to conceptualize the
._'orld. In some cases, identifying a property P (e.g.,
Car(z)) will suffice. In otiler cases we need to refine

P to subclasses "P = {Pl P,,} (e.g., SportsCar(z),
FamilyCar(z), etc.) For some goals, the finer distinc-
tion of properties is irrelevant, and therefore, reason-
ing will be more efficient if we change the theory by
abstracting the distinction. We would like to be able
to give the system knowledge about the domain that
will guide it in deciding when a predicate distinction
is relevant. To define the meaning of such an irrele-
vance claim in the framework, we first must define the
abstract theory resulting from removing the predicate
distinction and the mapping of derivations between the
original and abstract theories.

The Abstract Theory

Suppose we h._ve a theory A, consisting of a set of
predicates P-= ! Pl P,,} , _nd we want to abstract
the distincti,. _ween them by replacing them by a
predicate P , represents their union (e.g., we want
to replace {F,: _ilyCar, SportsCar} by the predicate
Car). Intuitively, to abstract the theory A, we re-
place every occurrence of a predicate in P in every
formula in A by P (e.g., abstract FamilyCar(z) =_
Vehicle(z) by Car(z) =_ Vehicle(z)). However, doing
so for every formula in A might result in an inconsis-
tent theory or in a theory that will entail conclusions
that were not entailed by the original one. In exam-
ple 2, abstracting rule r4 will result in a contradiction
(Car(z) =_ -,Car(z)), and abstracting r3 will result in
a fact that is not entailed by the theory (i.e., Car(z) =_
HighRisklnsurance(z) does not follow from the the-
ory). In order to assure that our derivation mapping
will be onto, we need the abstract theory to be consis-
tent with the _round one. Tenenberg [Tenenberg, 1987;
Tenenberg, : '.,i__]discusses predicate abstractions and
defines the _ _:mal set of formulas that can be in-
cluded in th,, __tract theory such that the abstract
theory will b,- resistent w_th the original one. His

126

definition is based on the interpretation of the abstract

predicate, which is the union of the interpretations of

the predicates in "P. However, as Tenenberg notes, this

set is usually infinite even when the ground theory is

finite. Therefore, the abstract theory we consider is

a finite subset of the one defined by Tenenberg. Our

abstract theory consists of the abstractions of the for-

mulas in the base theory that are independent of the

predicate distinction. Intuitively, a formula is inde-

pendent if its abstraction is consistent with the theory.
In the formal definition, we assume that formulas are

represented as clauses. A literal in a clause is negative

if it is a negation of an atomic formula (e.g., -_P(x)
is a negative literal, while P(x, y) is a positive literal).

Neg(C) (Pos(C)) denotes the set of negative (positive)
literals in a clause C.

Definition 15 : Independence Let P =

Pt,- .., P,_, and suppose Neg(C) _ is the result of substi-

tuting every occurrence of an element of'P in Neg(C)

by some other predicate in 79 using a mapping f_. (Two

occurrences of the same predicate need not have the

same mapping under fl.) A clause C is independent

of a predicate distinction 79 with respect to a ground

theory A, if for any such fl there exists a mapping,

]'2 of the occurrences of elements of 79 in Pos(C) to

elements of P, such that Pos(C)' = f_(Pos(C)) and

A b Pos(C)' U Neg(C) '1° |

Note, that a clause that contains only positive liter-

als from P will be independent whenever it is provable

from the theory. The problem arises with the negative

literals. In example 2, all rules but r 3 are independent

of the distinction {FamilyCar, SportsCar}.

Lemma 16: A clause C is independent of a predicate

distinction 79, if and only if f(C) would be included in

the abstract theory as defined by Tenenberg in [Teach-

berg, 1990].

The Derivation Mapping

Given the abstract theory produced by removing the

predicate distinction, we can define the mapping of

derivations in the base-theory to those in the abstract

one. Recall that we require that the mapping be an

onto mapping. Intuitively, given a derivation in the

abstract theory, a base-level derivation that is mapped

to it should be obtainable by reversing the abstraction
function on the formulas in the derivation. However,

as the following example shows, this cannot always be
done.

Example 17: Consider the following knowledge base:

r2: _(x) =_ R(z)
r3 : R(z) _ P,(z)

r4: P2(a)

1°Notice, that in the definition we use t% which assumes

a simple case where the base-level reasoner and the meta-
level reasoner are the same. However, in general, they need
not be the same.

Suppose we want to abstract P1, P2 by an abstract

predicate P. The resulting abstract theory will be:

sl : P(z) _ Q(z)

s_ : R(z) _ P(z)
ss :P(a)

st is included in the abstract theory because rl

is independent of the predicate distinction (because

P_(z) _ Q(z) is derivable from the theory).

The (single) derivation of Q(a) in the abstract theory

cannot be trivially mapped to a base-level derivation.

The reason is that it uses st and s3, and they are ab-

stractions of of rl and r4 which do not yield a base

level derivation of Q(a). |

The source of the problem is that some reasoning was

done in the process of creating the abstract theory. In

this case, st already represented a base-level chain of

reasoning that derived P_(_r) ::¢, Q(z).

Informally, we define the derivation mapping, h_,

by specifying all the base-level derivations that map to

a given abstract-level derivation D. The mapping is

defined in two steps as follows. Given D, we first con-

struct all the possible mappings in which occurrences
of P in D are mapped to elements of P, such that

the resulting derivation is a valid one. For example, in

Figure 3, the abstract-level derivation (a) has two such

possible mappings (b) and (c). Next try to complete
each of the resulting derivations such that they will be

valid derivation in the base-level theory. In our exam-

ple, (b) cannot be completed because Pl(a) does not

follow from our original theory. (c) however, can be

completed, as shown in (d). Any such complete base-
level derivation is mapped to D under the mapping

ha. In Figure 3 only (d) is mapped to the abstract

level derivation (a) (i.e., ha(d) = a).

In order to show that ho is onto, we must show that

at least one of the intermediate derivations can be com-

pleted to a valid derivation from the base-level theory.

We prove this by defining one mapping .M, from the

occurrences of P in D to "P. A4 will have the property

that when we apply it to D, the resulting derivation
is guaranteed to have a completion to a valid base-
level derivation. Let C be the leaves of the abstract

level derivation, D that contain the predicate P. We
define /¢1 on the occurrences of P in C such that two

literals that are resolved somewhere in D are assigned

the same predicate in "P. That ensures that 2_4 can be
extended to all the occurrences of P in D. For clarity,

we assume that P does not appear in the root of D,

and that D did not have any non-trivial factoring (see

[Genesereth and Nilsson, 1987]). We define a partial

order < on the clauses in C, and make assignments to

clauses in the topological order induced by <.

Definition 18: For every Ci, Cj 6 C, Ci < Cj iff an

ancestor of Ci is resolved with an ancestor of C3 on
a literal in P, and the ancestor of Ci contributes the

positive literal to the resolution. |

Lemma 19" The relation < is acyclie.

127

¢(a)

P(z) =vQ(x) P(_)

Q(a)

P,(,):*Q(,) P_(a)

Ca) (b)

Q(a)

P2(*)=_Q(,)

(c)

P2(a)

O(a)

e2(a) P2(*)_ O(*)

P2(*)=_R(,) R(,) .*P_(,)

(d)

Figure 3: Mapping base-level derivations to abstract-level derivations

Also note that if Ci is minimal in the order <, (i.e.,
there is no Ci such that C# < Ci), then Ci contains
only positive appearances of P.

We define A4 on the occurrences of P in (7/only after
we have defined the mapping for all its occurrences in
clauses Cj such that Cj < Ci, as follows:

• If Ci contains only positive appearances of P, we
map the occurrences of P such that that the re-

sulting clause is entailed from the base-level theory.
Note that by the definition of the abstract theory,
there must be at least one such mapping for Ci.

* If (7/contains negative literals of P, we do the follow-
ing. For any negative occurrence of P, the positive
literal with which it is resolved in D has been already
mapped previously (by the definition of <). Hence
we map it to the same element of P to which its
counterpart was mapped. As for the positive liter-
ais, any assignment for them such that the resulting
clause is derivable from the base theory is a valid
assignment. The definition of the abstract theory
(i.e., all elements of C are abstractions of indepen-
dent base-level clauses), guarantees that at least one
such assignment exists.

The mapping .M guarantees that every leaf of the
tree is either in the knowledge base or is derivable from

it. Therefore, the resulting tree can be completed to a
full base-level derivation.

Theorem 20: The derivation mapping he, is well de-
fined and _ato (i.e., every derivation in the abstract
theory h.': ,t least one derivation in the base theory
that map _ it), and is a simplifying abstraction.

Properties of the Irrelevance Definition

Given the definition of irrelevance, the question arises
whether given the original theory and the abstract one,
it is possible to decide if the predicate distinction is ir-
relevant to the goal. The following provides a first step
in that direction by identifying a class of derivations
that are preserved by the abstraction.

Theorem 21: IfDo is a set of derivations of the goal
such that for any D E Do, all the facts in Base(D)
are independent of the predicate distinction 7_, then
SI(P, ¢, Do) holds.

Observation 22: The converse does not hold. I.e.,
¢ can have a derivation in the abstract theory, but
not have one in the base theory only from independent
fact& Example 17 illustrates that. 11 l

II Note that if we change the definition of independence to
require Pos(C)' O Neg(C)' E A instead of A k- Pos(C)' t.)

128

From this condition and the algorithms described

in [Levy and Sagiv, 1992] we can construct an algo-

rithm for detecting irrelevance of predicate distinctions
in the following case:

Corollary 23: Given a Datalog theory, A and fv(A)

which zs the abstract theory resulting from removing

the distinction between predicates in P, there ts an al-

gorithm to determine whether SI(P, t/,,Do) holds for

any g_ven set of ground facts, where Do zs the set of all

non-redundant derivations of _p from A.

Note that creating the abstract theory is in general

undecidable because it entails solving the rule redun-

dancy problem. Methods for detecting some classes

of redundant rules (e.g., [Sagiv, 1988]) can be used to

construct a subset of the theory.

Other Relevance Subjects

The same technique described above can be used to

define irrelevance of other kinds of relevance subjects.
[Levy, 1992] discusses the following subjects:

• Object aggregations: We replace a set of object

constants by an aggregate object. E.g., replace the

subparts of a component by one object representing
the component. For example, in the Missionaries

and Cannibals problem [Amarel, 1981], we can re-

place the sets of missionaries and cannibals by ob-

jects denoting their sets.

• Object distinction: We replace a set of object con-

stants by a representative object that has only the

properties common to all elements of the set (i.e., we
replace a set O = {ol On} by an object o, such

that P(o) holds iff P(o,) holds for every oi E O.

For example, when reasoning about chemical reac-

tions, it is enough to consider only one representa-

tive molecule of every type in the chemical formula

and that suffices to describe the complete reaction
between the substances.

• Predicate representative: We replace a set of

predicates P by an abstract predicate that repre-
sents their intersection.

• Macro rule: We replace a set of facts S by a logical
consequence, s of S.

Conclusions

We presented a general formal framework for analyz-
ing the notion of irrelevance. The framework contains

a space of possible definitions of irrelevance claims that

enabled to formalize previous definitions (e.g., [Subra-
manian, 1989]) and present new ones. We identified

several important properties of irrelevance claims and

demonstrated how these properties change as we move

Neg(C)', we will get the converse direction too, i.e, if a

goal has a proof in the abstract theory, it will have one in
the ground theory in which all facts are independent of the
predicate distinction.

in the space of definitions. The framework enabled

us to irrelevance claims that serve as justifications for

abstractions, thereby providing a new view on work

in abstractions. Justifying abstractions by irrelevance

claims provides a first principles [Subramanian, 1989]

account of abstractions, elucidating questions such as

automatically creating abstractions, creating abstrac-

tions that are specific for a given goal and using domain

knowledge to guide the creation of abstractions. This

paper presents only initial work on in this direction

and much remains to be explored.

Acknowledgements
I would like to thank several people for discussions on

the topics discussed in this paper: Adnan Darwiche,

Ed Feigenbaum, Richard Fikes, Fausto Giunchiglia,

Pat Hayes, Yumi lwasaki, Hiroshi Motoda, Pandu

Nayak and Shuky Sagiv. Much of this work was done

while I was visiting the Hitachi Advanced Research

Laboratory, and I would like to thank Hitachi, and es-

pecially Hiroshi Motoda for their generous support.

References

Amarel, Saul 1981. On representations of problems of

reasoning about actions. In Webber, Bonnie L. and
Nilsson, Nils J., editors 1981, Readings in Artificial

Intelligence. Morgan Kaufmann, Los Altos, CA.

Clancey, William J. 1983. The advantages of abstract

control knowledge in expert system design. In Pro-

ceedings of the Third National Conference on Artifi-

cial Intelligence, Los Altos, CA. Morgan Kaufmann.
74-78.

Genesereth, Michael R. and Nilsson, Niis J. 1987. Log-

ical Foundations of Artificial Intelligence. Morgan
Kaufmann, Los Altos, CA.

Genesereth, Michael R. 1988. Introspective fidelity.

In Meta-Level Architectures and Reflection. Elsevier

Science Publishers B.V. (North Holland). 75-86.

Giunchiglia, Fausto and Walsh, Toby 1991. A the-

ory of abstraction. Submitted to Journal of Artificial

Intelligence.

Hayes, Patrick J. 1973. Computation and deduc-

tion. In Proceedings of the 1973 Mathematical Foun-

dations of Computer Science Symposium, Czechoslo-

vakian Acadamy of Sciences.

Kifer, M. 1988. On safety, domain independence, and

capturability of database queries. In Proceedings of

the International Conference on Data and Knowledge

Bases, Jerusalem.

Knobiock, Craig; Tenenberg, Josh D.; and Yang,

Qiang 1991. Characterizing abstraction hierarchies

for planning. In Proceedings of the Ninth National

Conference on Artificial Intelligence, Cambridge MA.
MIT Press. 692-697.

Knoblock, Craig A. 1990. Learning abstraction hi-

erarchies for problem solving. In Proceedings of the

129

Eighth National Conference on Artzficial Intelligence,
Los Altos, CA. Morgan Kaufmann.

Levy, Alon Y. and Sagiv, Yehoshua 1992. Constraints
and redundancy in datalog. In To appear in the Pro-
ceedings of the Eleventh ACM SIGACT-SIGMOD-
SIGART Symposium on Prznctples of Database Sys.
terns, San Diego, CA.

Levy, Alon Y. 1992. Creating abstractions using rel-
evance claims. In preparation.

Plaisted, D. 1981. Theorem proving with abstraction.
In Artificial Intelligence. Vol. 16, pp. 47-108.

Sagiv, Yehoshua 1988. Optimizing datalog programs.
In Minker, Jack, editor 1988, Foundations of Deduc-
tive Databases and Logic Programming. Morgan Kauf-
mann, Los Altos, CA. 659-698.

Shmueli, Oded 1987. Decidability and expressiveness
aspects of logic queries. In Proceedings of the 6th
ACM Symposium on Principles of Database Systems.
237-249.

Smith, David E. and Genesereth, Michael R. 1985.
Ordering conjunctive queries. In Artificial Intelli-
gence. 26(2)pp. 171-215.

Subramanian, D. and Genesereth, M.R. 1987. The
relevance of irrelevance. In Proceedings o/the Tenth
International Joint Conference on Artificial Intelli-
gence, Los Altos, CA. Morgan Kaufmann.

Subramanian, Devika 1989. A theory of justified re-
formulations. In Ph.D thesis, Dept. of Computer Sci-
ence, Stanford University. Stanford, CA.

Tenenberg, Josh D. 1987. Preserving consistency
across abstraction mappings. In Proceedings of the
Tenth International Joint Conference on Artificial In-
telligence, Los Altos, CA. Morgan Kaufmann. 1011-
1014.

Tenenberg, Josh D. 1990. Abstracting frst order theo-
ries. In Benjamin, Paul, editor 1990, Change of Repre-
sentation and Inductive Bias. Kluwer, Boston, Mass.

Uliman, Jeffery D. 1989. Principles of Database and
Knolwedge.base Systems, Volume I, IL Computer Sci-
ence Press, Rockville MD.

130

